
GNOKII
Then and Now
Hugh Blemings
Paweł Kot

The early days—gnokii then

To their credit, Nokia was one of the first mobile phone manufacturers to make
a suite of software available to interface their mobiles to a computer. Their suite,
“Nokia Cellular Data Suite” (NCDS) is Windows based and provides a complete
set of tools for manipulating phonebook entries, sending SMS messages etc.

The version available in 1998 also allowed the mobile to be used as an AT
compatible modem. Unlike modern models, this was something the handsets
were unable to do standalone. Essentially the software provided a virtual serial
driver that sat between the standard Windows serial layer and the phone. The
driver translated between Hayes AT style modem commands and the proprietary
protocol used by the phones (the so called FBUS or MBUS protocols).

The catalyst for what became gnokii was basically that Hugh had a Nokia
3810 which he used with a laptop running dual boot Linux/Windows. Not
being able to use the 3810 under Linux meant no mobile ’net access without
reboot, clearly an untenable situation :)



GNOKII—Then and Now 11

The project initially supported the then current 3810/3110/8110 model
series—another project had started for the then new 6110 series but not gen-
erated any code. After a short dialogue we combined the two efforts figuring
(correctly as it happened) that much of the higher level code would be common
anyway. Pavel Janik based in Brno, Czech Republic became co-author having
contributed the majority of the 6110 series code. Discussions in mid October
1998 to ”formalise” the project lead to gnokii-0.0.1 being released on January
26th, 1999.

During the early stages there was some dialogue back and forth with Nokia,
eventually leading to contact with the gentleman responsible for the NCDS
project itself. Regrettably after a promising start the discussions stalled in June
1999 on the matter of an open source release. Nokia’s concern it seemed revolved
around potential liability if someone used the information they provided to
defeat SIM locks and the like. Ironically this was worked out by people outside
the gnokii project anyway...

A quick introduction to early FBUS protocols

By the time we reached the impasse with Nokia, there had actually been several
releases of gnokii and we were well underway in understanding the protocols
in use. To understand what we had to work out, a little explanation of how the
FBUS protocol and GSM phones operate will assist. Note that what follows is
what we now know, how we came to know this is covered below.

Fax and data calls on a GSM network actually send binary data over the
air interface using the Radio Link Protocol (RLP). Some munging of the data
stream is done depending on the other end of the link. If the other end is
an ISDN connection the data stays in the digital domain the whole time. If
the other end is an analogue modem or fax then a device at the far end of
the network modulates/demodulates the RLP data into the baseband signals
required by the far end’s analogue modem.

What follows relates to the 3110/3810/8110 series, the 6110 series uses a
completely different and rather more complex variant of FBUS.

Most of the actions over FBUS followed a command/response sort of model.
The phone would also send some messages asynchronously in response to
events occurring on the network such as incoming calls, SMS messages arriving
etc. When run in data or fax mode (we never supported the latter on the
3110 series), the phone streams raw RLP frames off the GSM network down
the interface and similarly expects RLP frames to be sent to it. To get data
calls going we had to write our own RLP implementation from the relevant



12 Hugh Blemings, Paweł Kot

ETSI specifications. No small task but the Open Source Development model
prevailed.

Working it out ourselves

The FBUS protocol documentation wasn’t available to us so we set about working
it out ourselves. Different members of the team used slightly different setups
but the basic idea was to employ a second PC and a ”sniffer” cable to monitor
data going between the phone and the PC running NCDS. Contrary to popular
belief for a number of reasons we never took the approach of disassembling the
NCDS binary.

For the curious, an example serial sniffer cable is shown below

At the time we started working on gnokii there weren’t any suitable open source
tools for sniffing serial protocols. Some suitable C code was cobbled together
for the purpose. This would output data flowing in one direction enclosed
in square brackets, data in the other in braces with the hexadecimal byte and
ASCII character (if valid) in between them.



GNOKII—Then and Now 13

{01 }{02 }{4aJ}{16 }{5f_}[04 ][02 ][4aJ][0e ][42B][04 ][05 ][4bK][15 ][01 ][03 ]
[02 ][5f_]{01 }{02 }{4bK}{1d }{55U}{01 }{02 }{3f?}{17 }{2b+}[04 ][02 ][3f?][0f ]
[366][04 ][1b ][41A][16 ][02 ][00 ][00 ][00 ][00 ][00 ][00 ][a7 ][01 ][01 ][00 ]
[0c ][2b+][366][311][344][311][311][399][399][300][300][300][300][00 ][f9 ]{01 }

The basic code had a number of limitations, most notable was that it didn’t
really address time alignment of the received data—thus it wasn’t clear from
the output from the sniffer whether the PC or phone sent data first. This was
a bit of a nuisance initially but it quickly became apparent what was going on.

This tool was used to capture data corresponding to the ”idle” state of the
phone to PC connection. The idle ”heartbeat” provided sufficient information
to guess the basic protocol. Further captures were done while various actions
were performed such as reading/writing phone book entries etc. A capture
was done at startup to determine the initial handshaking bytes.

There was now enough information to write a simple state machine based
parser. This was used to look at incoming bytes and decode them into the
appropriate fields. When an unknown message was received it was dumped in
the following fashion.

To: MT43 SN11 CS51 [02 ][04 ]

Fr: MT46 SN17 CS79 [04 ][48H][6fo][6dm][65e][0c ][2b+][366][311][322][366]
[322][366][322][366][300][311][366]

The capture above shows Hugh’s old home phone number being retrieved from
the phone by NCDS. The message to the phone is Message Type 0x43 with
data fields 0x02 specifying SIM memory and location 0x04. In the response—
Message Type 0x46—the 0x04 byte is the length of the name field and 0x0c is
the length of the number field. Rest is pretty self evident...

The early releases

The result of this early work was the gnokii project, then lead by Pavel Janik
and Hugh Blemings. gnokii was developed as a free software project, released
under the GNU General Public Licence.

Initially, gnokii was just a command line test tool with support for the phones
mentioned above. Over time, the test tool became more and more powerful and
the support for the phones matured.

As the project progressed, other tools were created. Besides the gnokii com-
mand line there are three main tools: gnokiid, xgnokii and smsd.



14 Hugh Blemings, Paweł Kot

Gnokiid is the virtual modem application provided for Nokia the 6110
family phones. These mobiles don’t have AT command support but they are
able to make data calls. Gnokiid provides a software modem emulator that
passes the data to the phone using the FBUS protocol. Gnokiid creates a
/dev/gnokii device for communication. It is only used with the 6110, 6130,
6150, 5110 and 5130 phones.

Xgnokii, as the name suggests is a X based application that provides a
graphical interface to the phone. Amongst other things, xgnokii allows you
to read and write phonebook entries, read, write and send SMS messages and
monitor battery and received signal strength.

The SMSD (SMS daemon) program is intended for receiving and sending
SMS’s. The program is designed to use modules (plugins) to work with an SQL
server. Currently supported SQL engines are PostgreSQL, MySQL and a special
module ‘file’ which is designed to work without an SQL database.

Changes in the team

Unfortunately the gnokii development process has not always been peaceful.
Around 3 years ago gnokii passed though something of a leadership crisis.
Marcin Wiacek, one of the gnokii contributors, became frustrated that his
patches sent to the gnokii list were dropped by the gnokii team leaders and
started publically complaining about gnokii maintainership. For both Hugh
and Pavel external pressures had simply got to the point where they could no
longer devote the time required.

As a result, Chris Kemp and Pawel Kot took over the leadership of the
project. For various reasons it was decided not to provide Marcin with direct
CVS access. While the new core team tried to find consensus with Marcin it
eluded all concerned and he forked his own project called mygnokii based on
gnokii-0.3.3-pre8.

Since then there were efforts to merge the projects but none succeeded.
Marcin also dropped the mygnokii project and decided to write a new version
from scratch under the name ”mygnokii2” The project was later renamed to
gammu. Unfortunately there’s no official communication between the two
projects at present.

Gnokii now

As discussed in the preceding text, many things have changed since the project
began. Many users and developers have contributed to the project, too many



GNOKII—Then and Now 15

to mention them all here. The CREDITS file in the gnokii sources contains a
mostly complete list of contributors. The project evolved and began to support
more and more different phones. Currently most popular Nokia phones are
supported as well as the AT capable models. The table below shows driver, its
current support and the phones supported by the driver.

driver phones support

nk2110 Nokia 2110, 2140, 6080 outdated
nk3110 Nokia 3110, 3810, 8110, 8110i rising again :-)
nk6100 Nokia 6110, 6130, 6150, 6190, 5110, 5130, 5190, 3210,

3310, 3330, 3360, 3410, 8210, 8290
full

nk6160 Nokia 6160, 5120 partial
nk7110 Nokia 6210, 6250, 7110 mostly complete
nk6510 Nokia 6310, 6510, 8310 mostly complete
atgen Nokia 6210/7110/8210/6310/6510, Motorola

Timeport P7389i (L series), Siemens S25/SL45i, ...
improving

The current gnokii development team is much larger than it used to be, in
alphabetical order:

. Borbely Zoltan <bozo@andrews.hu>
Bozo takes care of: build system,
gnokiid, statemachine, link layer,
nk6110 and nk6210 drivers.

. Chris Kemp <ck231@cam.ac.uk>
Chris takes care of statemachine,
ringtones support and link layer.

. Jan Derfinak <ja@mail.upjs.sk>
Jan is the creator and maintainer
of xgnokii and smsd.

. Ladislav Michl
<ladis@linux-mips.org>
Ladis joined quite recently. He
looks after link layer and AT driver
(mainly duncall and cbus support).

. Manfred Jonsson
<manfred.jonsson@gmx.de>

Manfred takes care of device layer
and AT driver.

. Markus Plail <plail@web.de>
Markus takes care of the nk6210
and nk6510 drivers. All credits
for the latter driver go to Markus.
Markus also maintains xgnokii.

. Pavel Machek <pavel@suse.cz>
Pavel takes care of: libsms,
bitmaps, ringtones and nk2110 and
AT drivers.

. Paweł Kot <pkot@linuxnews.pl>
Paweł is current project leader.
He authored the updated libsms
based on the previous implemen-
tation, GSM specifications and dif-
ferent extensions. Paweł maintains:



16 Hugh Blemings, Paweł Kot

gnokii, libgnokii, libsms, build sys-
tem, documentation (yes, it sucks),

bitmap support, nk3110, nk6110,
nk6210, nk6510 and AT drivers.

Hugh Blemings and Pavel Janik are still with us but are not as active as they
used to be. They still chip in the occasional hint and help out with some
organisational issues.

There are some other people involved in the gnokii development. For exam-
ple, thanks to Marcel Holtmann, one of the Linux Bluetooth stack maintainers,
we have reliable Bluetooth support.

Current gnokii design
Gnokii has evolved over nearly five years. We don’t claim that it is a perfect
design, but it is getting better with the every update.

Gnokii is currently supported on Linux, win32, MacOS X, FreeBSD and
Solaris operating systems. The most active development is of course being
done on Linux, but win32 and MacOS X people are doing a good job as well.
FreeBSD and Solaris ports get synced from time to time.

The major difference between the current version of gnokii and the previous
ones is that all base functionality is provided by libgnokii. This is a library with
a well defined API that can be linked to an external application dynamically or
statically. With previous versions one had to grab the whole gnokii sources and
link with the object files built during gnokii compilation.

At some stage we stopped using threads in the internal structures. Using
them didn’t add much and caused portability and debugging problems. This
means that libgnokii needs to work in synchronous mode, but this isn’t proving
to be much of a disadvantage so far as all supported devices work this way.

libgnokii is internally split into various layers. The lowest layer is the device
layer. Currently we support serial ports on all operating systems as well as
IrDA and Bluetooth (BlueZ stack) on Linux.

Above the device layer is the link layer. This layer provides FBUS and MBUS
as the main protocols. It also provides a layer for AT capable phones and other,
less popular protocols.

Above all these is the phone driver. It contains the phone series specific
code.

At the highest level of abstraction there are miscellaneous sublibs that
are responsible for handling various kinds of the functionality: sms support,
calendar support, bitmaps support, ringtone support, etc. With the earlier gnokii
releases this layer did not exist and it is still not present in some functional
areas but it is proving to be a step in the right direction.



GNOKII—Then and Now 17

In the middle, across all these layers is a state machine, data structures and
functions that allow us to use a stateful connection.

Gnokii usage

gnokii is the command line tool, primarily developed to test the implemented
functionality, but with time it grew to the most powerful tool in the gnokii
package.

There are few main areas of gnokii functionality: sms support, phonebook
handling, calendar handling, security functions and other.

SMS support is an area where a lot of things left to do. We can send and
receive many types of the messages: plain text, unicode text, bitmaps (operator
logos, caller icons, startup logos), ringtones, picture messages, concatenated
messages (ie. messages containing more then 160 characters from the default
alphabet). Moreover you can save a SMS message to a mailbox and then read
it with Your Favourite Mail Client (tm). It is worth pointing out that gnokii
provides the possibility to send a flash SMS, eg. SMS that is immediately shown
on the phone display instead of saving it to the SIM card or the phone memory.

Newer Nokia phones have more SMS capabilities in regard to storing them.
Gnokii supports all folders features that Nokia provides.

Phonebook and calendar support offer full read-write access to phone/SIM
card data. vCard and vCalendar formats are supported.

More interesting features are the ”security” options. You can get the state of
the phone, eg. get the info that the phone is waiting for you to input the PUK
number. Then you can enter this number and even receive the code from the
phone. These options are not enabled by default, you need to configure gnokii
with ¡code¿–enable-security¡/code¿.

Gnokii now provides a total of 66 different command line switches and
almost every switch has multiple options available.

All this functionality is also provided by xgnokii. Some of the features are
of course better accessible with GUI, so you probably want to try out xgnokii
as well.

Future goals

Our next goal is to achieve multiple phone support. We have done much work
in this direction and in theory, the framework should support it, but no testing
has been done so far.



18 Hugh Blemings, Paweł Kot

Much work has been done last year in the internal gnokii design area. We’ve
put much effort into making gnokii more flexible and more extensible.

The “SMS industry” also goes forward. There are new SMS types: EMS,
MMS, which are to be supported by gnokii in the future.

The main area of the further gnokii development is the user interface for the
functionality provided by libgnokii. As of 0.5.0 version gnokii project provides
libgnokii with stable API to be used in the external applications. All user
applications from the gnokii project: gnokii, gnokiid, smsd and xgnokii, make
use of libgnokii.

More applications are planned. Recently two projects began to establish:
new GUI designed for Windows in C++ and new GUI written in gtk+ 2.0.

New cellular phones provided by mobile vendors permanently surprises us
with their functionality. Is seems that there will always be something to add
for gnokii.

The other direction of gnokii development is the integration with the third
party application. Such application can be OpenOBEX, that we want to use for
the Bluetooth file transfer to/from the phone, or misc PIMs that we want to
synchronise data with.

The history of gnokii has been a lot of fun but not without the occasional
difficulty. We’re looking forward to improving it with every new release and
thank those that have helped bring us this far.

February 2003
Hugh Blemings

Pawel Kot


